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Polaroids: a new rool in non-convex
and in integer programming

by

Claude~Alain Burdet

ABSTRACT

This paper presents a generalization,called polaroid,of the concept

of polar sets.

A list of properties satisfied by polaroids is established indicat-
ing that the new concept may be fruitfully used in an area of non-ccuve:
(called here polar) programming as well as in integer programming, by

means of polaroid c.uts; this class of new cuts contains the ones defined by

Tuy for concave programming (a special case of polar programming) and by

Balas for integer programming; it furthermoire provides for new degrees

of freedom in the const-uction of algorithmc in the above-mentioned areas

of mathematical programming.
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1) Preliminaries

L R RIS P

In this introductory cection we present the definitions and some

relevant properties of a new concept: polaroid sets and functions;

LTS\ o ot

these mathematical objacts are derived directly from the theory of con-

o
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vex sets and represent a generalization of polar sets; historically,

Tx

polar relationships have been one of the main topics in projective geome-

EITYS B NORVIR N LR oo

try where the involutory correspondence of poles and polars is of prime

interest. The first generalization to polar sets can be found in Min-

kowski [8 ]; these sets have since played an increasingly important
role in the area of convex analysis and mathematical programming (see

for instence, the treatise [10] by Rockafellar); more recently, Balas

PP NS T8 J3°3 VIOV Y B 2R SO

[ 2] has uncovered an interesting application of polar sets to integer

programm’ns, there the use of a positive-definite quadratic form (n-

dimensional sphere or ellipsoid) allows him to define his outer-polar
sets which enjoy all the desirable properties for the convex outer-

domain theory of valid intersection cuts (further aspects of this theory

have been discussed Ly Glover [5] anrd Burdet [3,4]).
Our objective here is merely to present some fundamental propertias
of polaroids, and to indicate how they can be fruitful in an area of

non~convex linearly constrained programming (called here polar program-

ming) as well as in integer (primarily zero-one) programming.

When the constrainad set is polyhedral, the use of polaroids can be
viewed as a generalization of the intersection approach of Hoang ‘Tuy {7]
for concave programming or of the in*ersection cut approach initiated by
Balas [ 1] in integer programming. The generalization with respect to

[7 ] is that polaroid cuts can be defined for non-concave problems;
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furthermore, for concave problems Tuy's cuts are uniformly deminated by

polaroid cuts; indees Tuy's approach can be imbedded as a trivial special case

in the present =itcory. With respect to the results of Balas [1,2], the
generalization consists in the fact that:
a) coavex polaroids can be defined for a more general class
of functions than positive cefinite quadratic forms as
in [2 ]; adequately constructed polaroids
can be used as convex outer-domains to generate new

cutting planes,

b) the convexity requirement impos:cé on outer-domains
merely plays the role of a sufficiency condition in the
construction of an intersection cut,

and it can be relaxed; it is shown that non-

convex polaroids may very well be used to generate valid

polaroid cuts.

Mea culpa: The underlying goal of this report is not primarily focused
on numerical and computational aspects of the uncovered
properties; the basic idea was to start with as general an object as pos-

sible {viz. polaroid sets) and to test those properties which seem prom-

ising for the global optimization of non-convex problems. The analysis
resulted in a hierarchy of properties ranked by increazsingly strong
assumptions., In a second effort it was found, however, that many of the
additional assumptions leading to the more sophisticated (higher ranked)
properties (such as convexity) certainly are convenient because they pro-

vide for automatic sufficiency conditions, but at the same time they seem
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to be unnecessarily taming the power of the approach. For insiance, for
the construction of a cutting plane it is believed (as indica‘ed in the .Lon-
clusicns) that a fruitful line of research @n order to attain computational

efficiency) would be to proceed along the following way:

a) generate a cut under very weak a priori assumptions (from
an arbitrary polaroid, for instance).

b) check a _posteriori the validity of the cut {using theorems
13 or 14); this may require 2n ad hoc weakening
read justment of the cutting plane but will in general yield

a better cut than if sufficiency conditions had been postu-

lated a priori for the entire polaroid.

2) Polaroids

1
Let £ = F/x,y)“!be a real valued function with two n-vector argu-~
ments x and y ; let P denote a closed set in )
Definition 1: For a given value of the parameter k , defire the polaroid

set Px(k) by
Px(k) = {y | £(x,y) < k , ¥xeP} 1)

By convention set Px(k) =@ , Vk < min {£f(x,y) | xeP}
Yy

Theorem 1 (Inclusion theorem):

For any closed sets P and Q C,th’ one has the following implica-

tions:
If Q CcP then Q*(k) DP*(k) ; and

If k, >k

1 then P*(kf -JP*(kz) .

2
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Proof: The nssertions follow from (1):
Q* (k) = {y;f(x&) <k, vxeQ} D {y| £(x,y) < k , ¥xeP D Q} = Px(k)
Pr(iy )= (v £0x,5) < k), VxeP] D {y] £0x,7) Sk, S k) , VxeP} = PH(k,)
Q.E.D.
Theorem 2 (Union tieorem): For any closed sets P , Q one has
(P U Q)* (k) = P*(k) N Q¥(k)

Proof:  (PU Q)% (k) = {y] £(x,y) <k , ¥vxe(P U Q)] =

= {y| £(x,y) < k , ¥xeP} N {y] £(x,y) < k , VxeQ}

= pr(k)  Qx(k) . Q.E.D.

Corollary 2.1: Let

(P8 Q) =cl {x]| xe(PUQ) and x£(P N Q)}

Then one has

Proof:

e wnes’ =m0 w
FUQY ) =[(CUQUEsAIW=En &N EaQ K

On the other hand, theorem 2 implies:

* * *
(PU Q) (k) =P (k) NQ (k) Q.E.D,

eoram 3 (Intersection theorem):

~ —

Proof:

* * *
®NQ* & >P (k) UQ K
ENQT & ={y] £6y) <k, Vxe(® N Q)
S {y ! £0,y) Sk, VxeP} U {y | £(x,y) & k , ¥xeQ} =

=P ) U Q k) . Q.E.D.
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Corollary 2.2:
FPo=eny’ ®neEaseEr e’
QW =N &N @bs @Y ®

Proof: P=(PNQ)U (PA (PN Q) , and similarly for Q ; applying

the union theorem completes the proof. Q.%.D.
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Corollary 2.3:

Paud @ =En@nieas @na)’wu s eno)ew .
SEAY W N @A QYW =2 w n W

The (first) equality is obtained directly from the corollary 2.2;

oo tt o0 4) 2N AN AT b et st

Proof:

the inclusion can be derived by inspection of the polaroid sets

in the bracket or directly from corollary 2.1, sinze P* U Q* D P* n Q* .

Definition 2: The function g = g(x) = f(x,x) is said poiarized by f .

Denote the level set of g by lev, g = {x] g(x) < a}

TSI,

Defi.ition 3: An arbitrary (closed compact) set § satisfying

¢*SﬂP<‘—1evkg

is called a valid cut at the level k . i

Ibeorem 4: A cut S, valid at the level kI y is valid at all higher

levels k(2 kl) .

Proof: Immedisate since levk gc levk g by definition.
1 2

Q.E.D,
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3) Convex Polaroids

3
RO TR TR KL COIUR TR (8 s B0ty !

Theoxem 5: The polaroid P*(k) is convex ¥k

LT s Tt A

PSCFRIS IYRAN &)

[
i
Hh

£(x,y) is quasi-convex in y, for all xzP .

P VIV T

LT

Proof: Llet y1 and y2 be arbitrary points in P#(,’) ; and set

[ TY SRR NI

L

Pt aay?,ocact

then ¥xeP , one has

[PV TR eI

£06,y0) = £y + A-M)y?) < max {£(,y0) , £G,yD)} =k

Furthermore, assume P*(k) convex for all k ; thus let

y3 = kyl + (l—k)y2 , then one has y3e P*(k) , for all k such that

A i 2 g LS

S SO KA BT BB et Loiht e

2
y1 and y e P¥(k) i.e. for all k such that:

(R F o

k > max {£(x,50) , f(x,yz)l xeP} .

St i LN

In particular for

VR oo

k = k max {f(x,yl) , f(x,yz) | xep} .

ay

* -
Since y3e P (k) one has V¥xep :

Hied

3 -
£(x,y°) < & = max {£06,yY) , £(x,y2)} , VxeP

Q.EQD.
In order to acquire at this point a better geometrical feeling for the con-

tent of the statement in theorem 5 let us review some classical results:
n
1) Let f be the euclidean scalar product f£(x,y) = & x.y, = <X, y>
i=

which yields {the square of) the euclidean norm as polarized
n

function x)= ¢ xi .
i=1




7.

Pollowing the classical definition [10] one finds

that, in this case, the polaroid P*(1) is nothing but the

ey

HEINN

polar set P*

P¥(1) = P* = {x¢ | <x,x%> <1, ¥xeP} f

SR LA S

In [2] Balas introduced a generalization of the classical

concept by allowing for a scaling factor k in the

above definition. Clearly this can be absorbed in our

%Y.

definition, cither by considering the poiaroid P*(k)

with respect to the same polaroid function £ , or by

ARSIV A AR TATQL TR

changing the polaroid function to f ==%'f and retaining

%
the parameter 1 : P (1) .
Since f is bilinear it is quasi~convex in y and theorem 5

garaphrases, in this case, the convex property of .

A7t o N sk ettt camn 0 AL AN IS o mt S e 1 ottt AL Ak N sl br'anad AN

polar sets.

TRIAL Sl Ve Dty il SO Lt S L SR P v S

TP RV Y

2) Let £ be the scalar product function corresponding to a

VRS

general Riemann metric, with arbitrary (real symmetric)

FRPRC SRR oY

enso ., 3 il.e,
metric tensor g1k 5 1

=}

f(x,y) = T g.,. Xy, >
ik=1 ik i'k %

for the polarized function g ore has

n
A} -
g (%} . 12<=1 83 k%i %

Since the parameter k can always be absorbed by the tensor
85k ° the polaroid P* = P%(1) 1is a genuine generalization

of the polar concept, to arbitrary quadratic forms (not

naecessarily definite or positive).
Since f 1is again bilinear, one finds from theorem 5

that the polaroid Px generated from an arbitrary set P

is convex; in a follow-up paper. we show how the nolaroid
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8.

theory can be used to solve an arbitrary non-convex quad=

ratic programming problem (particularly in the indefinite case) [12],

3) The following extension of a Riemann metric was found

useful to generate convex outer-~-domains In integer pro-

gramming {4 ].

e St ke wte A o N b AU RS KN St T

n
Let f(x,y) = .E. gixiyi
i=1
, )
= = :
= Ai(ai) for x, > 0 é
wherge = =0 for a+ =0 or a, =0 3
ore gi < O i i ‘.é
=24, @) for x, <O g
1 1 i j
n N . :
with ¢ Ai =1,4.>0, (ai and a, being given quantities).
i=1 *

The corresponding polarized function g

n 2

g(x) = £ g.x; is
. i%i
i=1

piecewise quacdratic, i.e. it is quadratic in each of the

2" "orthants of R°." Butl here agair becaure f(x,y) is

% linear in y for every x in a given orthant, the pola-
:~ﬂ~f' roid set P"(k) can be shown to be convex.

4) Consider a quasi-convex function g(x) and define

f£(x,y) =g(y) , ¥

A The polaroid P*(k) then merely reduces to P*(k) = levk g
and theorem 5 restates the known convexity property ot
3 levk g . In genersl, however, thare belongs many other

possibilities for choosing £ = f(x,y) such that f£f(x,x) = g(x) ;

4
4
)
3
b
R
4
A
3
IMmuw .
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9.

hence there will correspond other polaroid sets to
the szame polarized function g(x) ; examp'e 1 illus-
trates this situation, for instance.

5) This list could extend indefinitely! As a final example

consider
n n
f=fxy)= T (c..+ T d, . x)VYy.y.
i,3=1 i =3 ijk k” 7173

and suppose that P has the property that the matrix

[C + Dx] is positive semi-definite ¥xeP . Then

f(x,y) 1is convex ¥xeP and the polaroicd P* is

convex.

4) Complete polaroids

Until now we always considered k as an accessory parameter whose

value played no essertial role. We now analyze polaroids (comvex or not)

corresponding to particular values of k .

Definition 4: The polaroid P*(k) defined by (1) is called complete if

P < Px(k)

Definition 5: A function f = f(x,y) is called complete on P at the level k if

f(x,y) <k , V¥x,yeP

Thecrem & (Cumpleter.css the~rem):

The polaroid P*(k) is complete iff f is complete on P (at the level k).

Proof: Take any x'eP ; then f£(x,x"') < k , ¥xeP by hypothesis,when
f is complete; but one has P*(k) = {y{ (f£(x,y)) <k , ¥xeP} ,
which shows that x' must belon; to P*(k} and hence P < P*(k) .

Conversely, suppose P*(k) conplete; the argument is by contradiction:

sunypose there exists a pair x,yeP such that f(x,y) > k ; in this

y

'
.1
1

®

.

~

Z

-

kY

2
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VI T

case one has either x¢P*(k) or ygP*¥(k) , or both; in any case

P ¢ P¥(k) which is contrary to hypothesis,
Q.E.D.

TIPS LIRS T TORY

7

The following theorems will be useful in establishing

At

¥

optinality conditions for polar programming as well as for testing the

validity of ©polaroid cuts in integer programming.

TREN T TN

*
] Corollary 6.1: 1f P (k) 1is complete then P C levkg .

Proof: By hypothesis one has £f(x,y) <k , ¥x,yeP ; hence, in par-

ticular for y =x : f(x,x) =g{x) <k .

T

; Q.E.D.
Theorem 7: If f is syrmetric, i.e. f£(x,y) = f(y,x) then
E PC (B ) (k)
; Proof: P (k) = {y|£(x,y) <k , ¥xeP! , hence
: f(x,y) <k , ¥xeP , Vng*(k); but by hypothesis
: f£(x,y) = £(y,%X) < k , hence W¥xe¢P , one has
xe(® () (®) = {y|£(y,0) <k , Vyel ()]
g aud therefore P C (2 (k) (K) Q.E.D.
j Corollary 7.1: 1f P*(k) is complete (and f symmetric) then
P (P (k) (&) C P (k)
Proof: PC P*(k) implies
EENT® = YEEY) <k, vxep (0] ©
C fy|ECnY) < k, ¥xeP} = B (K)
Q.E.D.
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Let us now consider the 'boundary'" sets

bd Px(k) = {yeP*{k) | £(x,y) =k , for some xeP}
bd (lev,g) = {x | g(®) =k} .
Theorem 8: Suppose P*¥(k) is complete, then one has
[pn bd(levkg)] < [P N bd P*(k)]

Proof: First let us note that the assertion is trivial fer
[P N Etd(lev,g)] =@ .

Take xe [P N bd(levkg)] , i.e. xeP with g(x) =k . Since
Px(k) is complete, one alsc has xeP*(k). Thus =xeP*(kX) and
g(x) = f(x,x) =k , with xeP which completes the proof.

Q.E.D.

Theorem 6 indicates that when P*(k) is complete, k 1is =n

upper beund for the polarized function g on the set P . Theorem 8

n>w states that this upper bound may only be attained on the "boundary"

of the polarcid P#(k) . Thus complieteness means that no interior

point of P*(ﬁ) is an optimal polar program Xxe® , with

k = max g(x) = g(x) - This is stated in the foliowing
XEP

Corollery 8.1 (Boundary Theorem).

1f P*(E) is complete, then every optimal solution x of the

polar programming problem

maximize g{x, , subject tc .cP
satisfies x & bd P*(E) -
Proo?: Optimality implies x ¢ bd levkg ; theorem 8 completes the prcof.

Q.E.D.
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fhe above corollary, in a way, corresponds to the classical result
asser+ing that the maximum of a quasi-convex function over a closed

{(bounded) set P is always attained on the boundarv of P .

Theorem 9: Let QC P ; if P*(k) is complete, then Q¥%(k) is

complete.
Procf: From the inclusion theorem 1 one has P*(k) € Q*(k) and com-~

pleteness of Px(k) vialds

Q & P C P¥(k) & Q¥(k)

Q.E oDo
Theorem 10: Let Q< P and P*(k) be complete; then one has
QCc pcC 1evkg
and
(Rev, g)* (k) © Px(k) & Q*(k)
\
Proof: Immediate from theorems 1 and 7.
Q.E.D.

Coroiliry 10.,1: if Px(k) and (1evkg)* (k) are complete, then one
has

QC PC levg © (Fov,8)* (k} C PH(k) C Qx(k)

Proof: 1Immediate {rom theorem 10. Q.E.D.
lheorem 11: I£ ‘r v Q)% (k) is complete, then both Px(k) and
Q¥ (k) are complete.

Prooi: Frowm tte union th:orem one has

(PUQ)C (P U Q) (k) = P¥(k) N Qx(k) ;
but PC (P U Q) so that P& Px(k) N Qx(k) ;

and hence P C P¥(k) ; and similarly for Q . Q.E.D.

Lo
k:,

WSS TSRO ol s s =




STRTRT CTR R TIS CTRS (VYT

AT A L A e

T

MR ey

plodoed

LAENT M Tl oy ot ey

I

(o43

e

(LML Dirg dia e

5)

13,

In integer prougramming, one is really interested in the polaroid

set of isolated sets (points in all integer-, or linear fibers in

mixed integer-programming). Completeness of the outer-domzin is
clearly a desired feature in order to generate a deep cut and theorem
11 indicates that such an outer domain can be comnstructed as the inter-
section of individual polaroids (one for each point or fiber) proviued

all such polaroids contain all feasible integer points.

The same argument holds true, of course, in polar programming

if the feasible set P consists of (or is arbitrarily split inte)

several components,

Validity and optimality conditions

The definition 3 of a valid cut allows one to consider optimality
conditions in polar programming as a particular valid cut; this is formu-

lated in the next
Theorem 12: The polarized function g(x) = £(x,x) attains its maxi-

mal value k = g(i) over the set P at the point xeP

iff there exists a valid cut S at the level k = max g(x) = g(§)
xeP

Proof: “rivial (take for instamce S = levig) Q.E.D.
in this section we are not only interested in stating recessary and

suificient optimality conditions for polar programs in terms of more

general (aand computationally more easily tractablz) polaroids than

the (trivial) level sets lev g ; we also want to find the conditions

which must be satisfied, for an arbitrary cut to be valid; for instance,

the term valid cut can here be visualize: as : teiming from the cutting

plane approach of Tuy [7] for concave programming, or from the inter-

section cut approach, in integer programming, [1,4,5]. In tne latter case, how-

ever, & somewhat strnnger concept for valid cuts is necessary (see section 7).
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T Theorem 13: If the se;‘ (p N SS* (k) is conmplete then

? S 1is a valid cut at the level =« . !

; . Proof: Immediate from theorem 7, applied t.: the set (PN S) .

i Theorer. 14: Every subset S of a polaroid Px(k) is a valid cut.

§ Proof: (Eliminate the uninteresting case where SN P=4§ .) One has

Pr(k) = {y | £(x,y) <k , VxeP:

: hence f(x,y) <k ¥xeP , ¥yeS C F*(k) and in particular :

f(x,y) <k , ¥x,ye PN S E

Thus the function £ is complete on the set (P i1 S) ; theorems 6 and r

7 establish that the definition 3 is satisfied. Q.E.D. y

Corollary 14.1: PN Px(k) c levkg

ML LY

*
Proof: 1) One may simgly set S=P (k) and apply Theorem 14 together with
— Definition 3,

2) Alternately, the proof can be obtained as follows:

Lyl

Fk) = fy|£(x,y) <k, VxeP}

*
hence yeP (k) = £(x,y) < k, VxeP and, in particular,

when x=yeP, one lLas
*
f(y,y) = 8(N< k, VyeP O P (k)

Q.E.D.

In theorems 13 and 14 one notes that neither of them requires

P Rde

completeness of P*(k) ; all that is required in theorem 13 is that the
cutoff portion of P (i.e. (PN S) ) be contained in the polaroid
(P N1 S)* (k) ; from the intersection theorem 3 one has

(P N S)x (k) O Px(k) U S* (k)

—
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showing that the hypothesis of theorem i3 is quite weak and should

2 be easy to test computationally; in particular when one constructs S as ?
é a subset of P*(k) (as is often practically the case) theorem 14 %
. shows th:at one merely must ensure SC Px . i
Corollary 6.2: (Optimality theovem) é
The point x is an optimal solulion of the polar programming ?
i problem
5 maximize g(x) , subject to xeP

iff there exists a complete polaroid P#*(k) such that

Tt A p A SRR DA WM

x € bd P*{(k)

SR

Proof: Immediate from theorems 7 and 8. Q.E.D.

6) Polaroid cuts for linearly constrained polar or integer programming problems.

L4 RO SR Eh el KL AR

no.
T.et us now focus our attention on the polvhedral sets PC R i.e.

Qv

P={x= xl,...,xn) ] X, =X, - I_a

. t. 20 , ¥ie®UM) (2)
3 jeN

ij 73

where it is assumed that (2) represents a lincar program in explicit

(Tucker) format, expressed with respect to a basis with non-basic set

: NS (NUM) ; N={1.2,...,n}

&Y

is the set of the original variables;

M = {n+l,...,04m} s the set of the slack {and artificial)variables. 3

Consider the extreme (basic) ray uJ(tj) =x - gjtj > tj >0, jeN :
3 where a, = (alj’azj’°'°’5nj) )
% x = (xl,iz,...,in) s

aa

and assume (for simplicity of the exposition) that % e Int P*(k) ,

TPt

i.e. that the intersection points uJ(XJ) of each ray uj, jeﬁ with

the"boundary' of P*(k) are different from x , that is

SJEHh =% M3, L, aeh T o

j
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Furthermore define the halfspaces

H ={x=x(t)] T_ -}; t, > 1}
jeN 303

- 1

H ={x=x(t)]| z_ = ¢t <1}
jen X3 4

where x(t) = (xl(t),xz(t),...,xn(t)) is given by the n first com=
ponents of the linear program (2) characterizing P . Clearly H+ and

H are open, and they are both defined by the cutting plane

>0 fe
et
(.
I
[

jeN

(Note that, (by assumption) x € 4y o, i.e. x £ H+) ;

Define the set S C P*(k) as the following n-dimensional simplicial
hull S = conv ‘:}.'., uJ(XJ) R Vjeﬁ}

Assuming that the hypothesis of one of the theorem 13 or 14 is
satisfied the set S represents a valid cut. (See section 7) Implementation intc
the current linear programming tableau merely amounts to the addi-

tion of the new linear constraint

2-
jEN

> =
Lo
[

called polaroid cut.

For the use of a cutting plane method to solve non-convex prob-

lems the reader is referred to the pape:s by Hoang Tuy [ 7 ], Glover {5]

and Klingman {11}, Gomory [ 6 ], Balas [1,2] oz Burdet {3,12]. A more
detailed study of particular types of polaroid cuts in integer pro-

gramming is given in Burdet [4,12].

P - p v R e e Doy re P -
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7) Conclusions

er T RITR

3

In polar programming the objective function is the peolarized

function g ; algorithms for solving such non-convex optimization

LRGP RTS

’ problems therefore follow a stepwise construction of a set S

satisfying

oL PR TR R EARY

PC S C Pr(k)

B

where k is always the current best value and ultimately

k = max g(x) . The optimality theorem provides for the
xeP

stopping criterion, In practice, the use of polaroids will prove

efficient whenever the set P¥(k) is much larger than P ; in this case

TR

ample roum is left for an easy construction of a set S yielding a sufe-

ficiency condition for global optimality.

In integur prcgramming, the use of polaroids is somewhat Jif-

R AL LR O NCITRNRE RIS IR 1731\ 71 A R A SR TP

TN AT YA TR T

ferent since they are only used for the characterization of

the set of feasible integer solutions, as compared to the other

T

(continuous) feasible solutions; the polarized function g then

usually has the property:

ST S NPRINT SR NIRRT SN SR RPIXY

aver s

givy =1 ¥v = vertex of a unit cube U(X)

BOPR I

TN

.ontaining the linear programming

K

cetan

optimum x .,

L
3
3
-
4
9
3
-3
‘L
<
t
r
.
)
S
-

g(x) <1 ¥x e U(X)

thus k =1 ; the meaning of a valid cut S here becomes: Int(S) con- .

tains no feasible integer point (as shown by theorem 13, the con-

struction of a valid cut requires neither completeness nor convex-
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ity of the polaroid P*). However, a stronger definition of valid cuts

RASILA TR Lecpads o oy

is needed here; we need add the requirement

24

I
TN e e L b i e £ AN A A e S b L

Int(S) N [P N bd levkg] =4

to the definition 3.

In texms of this new definition, Theorem 13 remains true if one reguires

the additional hypothesis:

PRI ¥ T PO Y o

%
SC (PNS) (k) ; indeed, by .neorem 8:
*
(PNsSnbd levg) c (P NS Nbd (PAS) (k) )
every feasible integer point which lies in S also lies on the boundary of S

bl SO (PN SNbHbd lev, g)

T TR TR R T P S IR T XUV Y

T

*
(Proof : since Int(S) Nbd (PN S) (k) =@ one has

LAY

Int(S) N bd levkg ce, Q.E.D.}

Lot Gt

This general result opens a new area of research which contrasts from the

algebraic approach of Gomory [6] or the intersection approach of Balas {1]

TR e

where one imposes in advance conditions which are sufficient to ensure the

validity of the cut independently of the particular simplex S which

Ly il =

is actually generated. The polaroid cut approach also entails such

Gdd

< a possibility (using convex and complete polaroids); but, in addition,

*
it can lead to new metholds where an arbitrary polaroid P 1is used to

*
generate the simplex S (owing to the generality of P , this cut

can be made Jdeep); in a second phase, the validity of S is then

established; for instance by checking directiy SC P  (theorem 14).

Savr IR b L L L
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Footnotes H

L

Page J E

: —/f is in fact a bifunction [10] with object functions £(x;-), for E
1 - : R . n . 3
. xeP; f can also be viewed as a multivalued mapping R - R, where each Z
i

5 . X¢P determines a particular mapping. :
“: ;
3 !
: ]
3 ;
3 3
] k|
3 2
% !
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